区块链开发、机器(深度)学习暨Python大数据综合应用研修班

2018年7月16日 9:00 ~ 2018年7月20日 17:00
限额100人
AICloud

展开

付费活动,请选择票种

第三方登录:

展开活动详情

活动内容收起

一、课程目标

1,通过课程学习,可以理解机器学习的思维方式和关键技术;了解深度学习和机器学习在当前工业界的落地应用;能够根据数据分布选择合适的算法模型并书写代码,初步胜任使用Python进行数据挖掘、机器学习、深度学习等工作。

2,本次培训的目的是使学员能够掌握区块链理论基础、模型与应 用场景,前沿的应用方法及学习架构,课程秉承以实用为主,主要讲授区块链核心技术、实践技能及 典型行业应用,通过紧密结合应用实例,整套课程体系 贯穿主线,从技术原理、到技术实现、再到产品落地。

二、讲师简介

邹博,中国科学院副研究员,天津大学软件学院创业导师,成立中国科学院邹博人工智能研究中心(杭州站),在翔创、天识、睿客邦等公司担任技术顾问,小象学院签约讲师,研究方向机器学习、深度学习、计算几何,应用于大型气象设备图像与文本挖掘、股票交易与预测、量子化学医药路径寻优、传统农资产品价格预测和决策等领域。

尹老师,数据科学家,浙江大学物理学博士,浙江某高校数据科学专业负责人,兼任某网络科技上市公司大数据总监,受聘担任多家大数据教学机构主讲教师,开发多套python高级编程、机器学习、网络爬虫与文本挖掘系列课程,10+年python软件开发数据产品经验,熟悉R \Javascript等多种编程语言,具有丰富的python统计建模、数据挖掘、大数据技术教学经验,先后为中国交通银行,平安保险公司等数十家知名机构主讲python课程。

高老师,计算机博士,双一流高校副教授,密码学专家,主攻信息安全、人工智能,主持参与多项国家、省市科研项目,对密码学、分布式共识算法有深入研究,关注与实践区块链技术与应用,参与多个区块链实战开发项目,国内高校首开区块链课程并担任主讲老师,著有《区块链原理技术与实践》一书

三、课程模块

1、机器学习、深度学习算法原理及案例实现

专题模块

内容设置

代码与案例实践

第1讲:Python机器学习与TensorFlow

解释器Python2.7/3.6与IDE:Anaconda/Pycharm

列表/元组/字典/类/文件

numpy/scipy/matplotlib/panda的介绍和典型使用

scikit-learn的介绍和典型使用

TensorFlow典型应用

典型图像处理

多种数学曲线、多项式拟合

快速傅里叶变换FFT、奇异值分解SVD

Soble/Prewitt/Laplacian与卷积网络

卷积与(指数)移动平均线

股票数据分析

缺失数据的处理

环境数据异常检测和分析

第2讲:多元线性回归与Logistic回归

线性回归

Logistic/Softmax回归

广义线性回归

L1/L2正则化

Ridge与LASSO

Elastic Net

梯度下降算法:BGD与SGD

特征选择与过拟合

Softmax回归的概念源头

最大熵模型

K-L散度

 

股票数据的特征提取和应用

泰坦尼克号乘客缺失数据处理和存活率预测

环境检测数据异常分析和预测

模糊数据查询和数据校正方法

PCA与鸢尾花数据分类

二手车数据特征选择与算法模型比较

广告投入与销售额回归分析

鸢尾花数据集的分类

TensorFlow实现线性回归

TensorFlow实现Logistic回归

第3讲:决策树和随机森林

熵、联合熵、条件熵、KL散度、互信息

最大似然估计与最大熵模型

ID3、C4.5、CART详解

决策树的正则化

预剪枝和后剪枝、Bagging

随机森林

不平衡数据集的处理

利用随机森林做特征选择

使用随机森林计算样本相似度

异常值检测

随机森林与特征选择

决策树应用于回归

多标记的决策树回归

决策树和随机森林的可视化

葡萄酒数据集的决策树/随机森林分类

泰坦尼克乘客存活率估计

第4讲:SVM

线性可分支持向量机

软间隔

损失函数的理解

核函数的原理和选择

SMO算法

支持向量回归SVR

多分类SVM

 

原始数据和特征提取

调用开源库函数完成SVM

葡萄酒数据分类

数字图像的手写体识别

MNIST手写体识别

SVR用于时间序列曲线预测

SVM、Logistic回归、随机森林三者的横向比较

第5讲:卷积神经网络CNN

神经网络结构,滤波器,卷积

池化,激活函数,反向传播

目标分类与识别、目标检测与追踪

经典AlexNet、VGGNet、GoogleLeNet

ResNet、Inception-V3/V4

搭建自己的卷积神经网络

数字图像识别、人证合一验证

基本OCR系统

基于CNN的图像识别框架

卷积神经网络调参经验分享

第6讲:图像视频的定位与识别

卷积深度与卷积核关系

视频关键帧处理

物体检测与定位

RCNN,Fast-RCNN,

Faster-RCNN

MaskRCNN、YOLO、FaceNet

迁移学习与人脸检测

OCR字体定位和识别

睿客识云、气象识别

第七讲:循环神经网络RNN

RNN基本原理

LSTM、GRU、Attention

编码器与解码器结构

特征提取:word2vec

Seq2seq模型

机器翻译、文本摘要、阅读理解问答系统

图片标注与图片问答

HMM分词、文本摘要的生成

智能对话系统和SeqSeq模型

阅读理解的实现与Attention

第八讲:生成对抗网络GAN与强化学习RL

生成与判别

贝叶斯、HMM到深度生成模型

GAN对抗生成神经网络

DCGAN/Conditional GAN

InfoGan/    Wasserstein GAN

马尔科夫决策过程

贝尔曼方程、最优策略

策略迭代、值迭代

Q Learning、SarsaLamda、DQN/A3C/ELF

图片生成、看图说话

对抗生成神经网络调参经验

飞翔的小鸟游戏

基于增强学习的游戏学习

DQN的实现

2、区块链原理与开发

模块一

第1讲:区块链技术原理

1.数字货币原理与技术

2.区块链现状、概念、主要特征、部署形式

3.区块链技术演进历程

4.区块链参考架构及主流平台

第2讲:区块链主流项目

1.比特币项目(公有链)

2.以太坊项目(公有链)

3.Hyper Ledger项目(联盟链)

模块二

第3讲:区块链主流技术及原理(以太坊)

1.以太坊区块链发展及现状

2.以太坊区块链核心概念(以太坊虚拟机/账户/密钥/交易和消息/以太币/Gas/状态转换)

3.以太坊体系架构(数据模型/共识机制(PoW/PoS)/以太坊网络/以太坊钱包/以太坊客户端和浏览器/DApps)

第4讲:智能合约技术

1.  智能合约概述

2.  智能合约体系架构

3.  智能合约运行机制

4.  智能合约安全性

第5讲:智能合约实践

1.以太坊测试链环境搭建

2.Solidity编程

3.智能合约编写与部署

4.智能合约测试与执行

5.去中心化投票App开发、测试部署

模块三

第6讲:超级账本平台

1.Fabric 1.0简介

2.系统逻辑架构

3.网络节点架构

4.交易流程

5.消息协议结构

6.策略管理

第7讲: 超级账本核心技术

1.Gossip的p2p数据分发

2.分布式账本存储

3.共识机制

4.成员管理

5.链上代码

选修模块

 

第8讲:区块链行业应用产品典型案例深度剖析

1. 区块链在金融领域系统(清/结算、资产数字化、P2P等等)

2. 物流行业

3. 房屋租赁

4.  供应链管理/供应链金融

第9讲:区块链技术发展趋势及解析

1.  共识算法

2.  智能合约安全

3.  隐私保护

4.  可扩展性

5.  跨链技术

3、python高级编程与大数据综合应用

第一天

第1讲:Python数据科学环境搭建

1. Anaconda套件

2. Python开发IDE介绍

3. 数据科学相关库简介

4. Jupyter notebook基本使用

5. Markdown基础语法

第2讲:Python编程基础

1.    基础数据结构--列表

2.    基础数据结构--字符串

3.    基础数据结构—字典

4.    Python基础语法-控制流

5.    Python基础语法-函数

6.    Python异常处理

第3讲:文件组织与处理

1. 文件读写

2. 文件组织

3. 处理Excel电子表格

4. 处理PDF和Word文档

5. 处理CSV和JSON数据

第4讲:图像组织与处理

1.    Pillow库简介

2.    处理Image数据类型

3.    图像剪裁

4.    图像旋转和翻转

5.    图像绘制

第二天

第5讲:Python编程进阶

1.    Python基础-类

2.    Python基础-模块

3.    迭代器与生成器

4.    Python标准库介绍

5.    案例:利用Python解决八皇后问题

第6讲:Python与数据库

1. Python的数据库支持

2. Python与SQLite

3. Python与MySQL

4. Python与NoSQL

5. 案例:构建简单的Python数据库应用

第7讲:Python文本处理

1.    Python的字符串操作

2.    Python与正则表达式

3.    自然语言处理包NLTK

4.    文本语料与词汇资源

5.    中文分词介绍(jieba)

6.    文本挖掘预处理技术

第三天

第8讲:Python网络爬虫

1.    网络爬虫技术基础

2.    基础Python爬虫库(urllib/Requests)

3.    “漂亮”的爬虫库-Beautiful Soup

4.    静态网页爬取案例分享

5.    Ajax和DHTML网站爬取

第9讲:Python数据分析

1. 利用Python进行数据操作

2. 数值计算- numpy基础

3. 基础绘图与可视化-   matplotlib

4. 数据分析库-pandas

5. 案例:美国儿童的姓名趋势探索分析

第10讲:Python数据可视化

1.    数据可视化简介

2.    Python可视化进阶Seaborn

3.    Python交互式可视化-Bokeh

4.    互动性图表的另一选择-Plotly

5.    词云介绍

第四天

(选修)

第11讲:Python统计分析

1.    科学计算库scipy简介

2.    统计分析库StatsModels简介

3.    概率与分布

4.    参数估计和假设检验

5.    统计模型与回归分析

6.    多元统计分析

第12讲:Python机器学习

1.    机器学习简介与基本流程

2.    常用机器学习算法介绍

3.    机器学习中的预处理技术

4.    特征工程

5.    模型评估与改进

6.    案例:某银行贷款违约风险预测

7.    案例:泰坦尼克号沉船幸存者预测

第13讲:高性能Python与大数据处理

1.    Python大数据处理技巧

2.    Cython与numpy

3.    PyPy简介

4.    分布式计算与Python

5.    利用PySpark处理大数据

四、颁发证书

经考核合格可获得国家工信部全国通信和信息技术创新人才培养工程《大数据挖掘与分析应用高级工程师》、《区块链开发与应用高级工程师》职业技术水平证书。该证表明持有者已通过相关考核,具备相应的专业知识和专业技能,并作为聘用、任职、定级和晋升的重要参考依据,全国通用

五、时间与地点

    模块一: 2018年7月16日~20日   昆    明

  可咨询:18310280875

六、费用标准

模块一、三参会费均为4980元/人,模块二参会费3980元/人(含

专家授课费、教材考试费、证书申报、场地等),食宿统一安排,

费用自理。



举报活动

活动标签

您还可能感兴趣

您有任何问题,在这里提问!

全部讨论

还木有人评论,赶快抢个沙发!

活动地点(查看大图)

微信扫一扫

分享此活动到朋友圈

活动日历   12月
26 27 28 29 30 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6